
CS 70 Discrete Mathematics and Probability Theory
Fall 2011 Rao Midterm 1 Q3 Soln

1. (8 pts.) Quantifiers

(a) (∀n ∈ N)(P(n))
D - If P is a statement which is always true, this proposition holds. If P is sometimes false, this
statement will not hold.

(b) (P(0)∧P(1))→ ((∀n ∈ N)(n≥ 1→ P(n)))
D - If P is a statement which is always true, this proposition could hold. If P is sometimes false, this
statement will not hold. The base cases are insufficient to show the proposition holds for any values of
n except powers of 2.

(c) ((∀n ∈ N)(n is odd→ P(n)))→ ((∀n ∈ N)(n≥ 1→ P(n)))
T - If P(n) holds for all odd n, it must hold for all n ∈N, because every n is either itself odd or a power
of 2 multiplied by an odd number.

(d) (∀n ∈ N)(P(2n))
D - If P is a statement which is always true for even n, this proposition holds. If P is sometimes false,
this statement will not hold.
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2. (13 pts.) True or False

(a) True
For n≤ 3,¬(n > 3), so ¬(n > 3∧n2 < 16). For n≥ 4,n2 ≥ 16, so ¬(n2 < 16), so ¬(n > 3∧n2 < 16).

(b) True
False statements may imply anything. Hence if P is false, P =⇒ Q. If Q is false, Q =⇒ P. If both P
and Q are true, then P =⇒ Q, so for any boolean values of P,Q, the proposition is true.

(c) False
Let P,Q be false and R be true. Then (P∧Q)∨R is true but (P∧R)∨ (Q∧R) is false.

(d) False
If x+7≡ y+7 (mod 9) then x≡ y (mod 9)

(e) True
4x≡ y (mod 9) =⇒
7×4x≡ 7× y (mod 9) =⇒
28x≡ 7y (mod 9) =⇒
27x+ x≡ 7y (mod 9) =⇒
(3×9)x+ x≡ 7y (mod 9) =⇒
x≡ 7y (mod 9)

(f) True
We know gcd(x,y) = gcd(y-x, x), so gcd(453,368) = gcd(453-368, 368) = gcd(85,368).

(g) True
If gcd(x,m) = d, d > 1, then choose k = m

d . k ∈ {1,2, . . . ,m−1}. x can be written as a×d, d ∈ N. So,
kx≡ adk ≡ am≡ 0 (mod m).

(h) False
Choose x = 1. Then ∀k ∈ {1,2, . . . , p−1},kx≡ k (mod p) 6≡ 0 (mod p)

(i) False
P and Q may each have up to 5 roots (x-values such that P(x) = 0). P(x) ·Q(x) will have all the roots
of both P and Q. If they had different roots, (P ·Q)(x) could have up to 10 roots.

(j) True
If each of two polynomials contains 5 of 8 predetermined points, then they must share at least 2 points.
It is possible to construct two different degree-3 polynomials which share 2 points.

(k) False
If each of two polynomials contains 6 of 8 predetermined points, then they must share at least 4 points.
It is impossible to construct two different degree-3 polynomials which share 4 points.

(l) False
If each of two polynomials contains 7 of 8 predetermined points, then they must share at least 6 points.
It is possible to construct two different degree-3 polynomials which share 6 points.

(m) False
Let man A’s preferences for women be 1, 2. Let man B’s preferences for women be 2, 1. Let woman
1’s preferences for men be A, B. Let woman 2’s preferences for men be B, A. The only stable pairing
is (1, A), (2, B). Since it is the only pairing, it is pessimal for both women, though both women are not
paired with their least favorite man.
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3. (54 pts.) How many? What expression?

(a) 4! ·2! ·2!.
There are 4! ways to choose the first row, 2! ways to choose the second row of the leftmost 2× 2
subgrid, and 2! ways to choose the second row of the rightmost 2×2 subgrid.

(b)
(6

2

)
·6 ·5 ·4 ·3 ·2.

There are
(6

2

)
choices for the positions of the repeated dice (out of six rolls), 6 choices for the repeated

value, and 5 ·4 ·3 ·2 choices for the remaining unique values.

(c) n(n−3)
2 or

(n
2

)
−n.

The first answer comes from n choices for an endpoint u of a diagonal, and n−3 choices for the other
endpoint of the diagonal (excluding the vertex u itself and its two neighbors). Divide this number by 2
for having doubly counted each diagonal.
The second answer comes from

(n
2

)
choices for two distinct vertices, and subtracting the n choices for

adjacent pairs that aren’t diagonal.

(d)
(n

k

)
.

A subset of k (distinct) integers from {1, . . . ,n} corresponds uniquely to an increasing sequence of k
integers from {1, . . . ,n}, and vice versa. (Sort the k integers in a subset to get an increasing sequence.)

(e)
(n+k−1

k

)
.

A configuration of k balls inside n bins corresponds uniquely to a nondecreasing sequence of k inte-
gers from {1, . . . ,n}, and vice versa. (A ball in bin i corresponds to an occurrence of the integer i in a
nondecreasing sequence.)
A common incorrect answer is nk−

(n
k

)
, which is the number of “not decreasing” sequences of k inte-

gers from {1, . . . ,n}. This is incorrect because a “not decreasing” sequence need not be nondecreasing.

(f) pd+1.
In a polynomial c0 + c1x+ c2x2 + · · ·+ cdxd of degree at most d, there are p choices for each of the
d +1 coefficients c0, . . . ,cd .

(g)
(p

d

)
(p−1).

There are
(p

d

)
choices for d distinct roots a1, . . . ,ad , and p− 1 choices for the non-zero value P(b) at

any other point b. The polynomial is then uniquely determined by the d +1 points (a1,0), . . . ,(ad ,0)
and (b,P(b)).

(h) 0.
By Langrange interpolation formula, P(x) = 2 ·∆1(x)+1 ·∆2(x)+0 ·∆3(x), where

∆1(x) =
(x−2)(x−3)
(1−2)(1−3)

=
x2−5x+6

2
∆2(x) =

(x−1)(x−3)
(2−1)(2−3)

=
x2−4x+3
−1

. (1)

(Recall that all arithmetics are mod5.) Plugging (1) into the above formula, the coefficient of x2 in
P(x) is 2 ·2−1 +1 · (−1) = 0.

(i) 0.
This is a special case of part (k) below with m = 12,n = 4,b = 6.

(j) 4.
This is a special case of part (l) below with m = 12,n = 8,b = 4.

(k) 0.
As x runs over {0, . . . ,m−1}, nx runs over multiples of d. nx is never equivalent to any integer b that
is not a multiple of d.
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(l) d.
As x runs over {0, . . . ,m− 1}, nx runs over multiples of d. There are m/d such multiples from
{0, . . . ,m−1}, and nx is equivalent to any multiple b exactly d times.

(m) 7.
By Fermat’s Little theorem, 1536 ≡ 1 (mod 37). Hence 15404 = (1536)11 · 158 ≡ 111 · 158 = 158

(mod 37). To compute 158 (mod 37), we use repeated squaring, yielding 152 = 225 ≡ 3 (mod 37),
154 ≡ 32 = 9 (mod 37), 158 ≡ 92 = 81≡ 7 (mod 37).

(n) 9.
In the analysis of RSA, we proved x1+(p−1)(q−1) ≡ x (mod pq) for any distinct primes p,q. Apply it
with p = 5,q = 7, we get (95)5 = 91+(5−1)(7−1) ≡ 9 (mod 35).

(o) 0.
1p +2p + · · ·+(p−1)p ≡ 1+2+ · · ·+(p−1) (mod p), by applying Fermat’s little theorem to each
summand. Now 1+2+ · · ·+(p−1) = p(p−1)/2, which is equivalent to 0 (mod p), since (p−1)/2
is an integer when p is an odd prime.

(p) 2.
If Jung Lin isn’t proposed on the first day, some other woman is proposed by multiple men on that day,
and some man gets rejected. That man will propose to Jung Lin on the second day.

(q) n+2.
At least one man gets rejected every day (except the last). During the first n+1 days, some man must
be rejected at least twice. That man will propose to Sheila on day n+ 2 (or earlier). It is possible to
come up with preference lists so that Sheila is first proposed on day n+2 (by having exactly one man
rejected every day, and having exactly one man rejected more than once in the first n+1 days).

(r) T .
Some woman is proposed every day during a run of TMA.

CS 70, Fall 2011, Midterm 1 Q3 Soln 4



4. (25 pts.) Reviewing Simple Proofs

Solution to 4a:

Proof by contradiction: Assume that
√

3 is rational. This means there are integers a and b (with b 6= 0) such
that
√

3 = a
b . Without loss of generality, we shall furthermore require that a and b are positive and in lowest

terms; that is, they have been selected so that gcd(a,b) = 1.

Squaring both sides of
√

3= a
b gives us 3= a2

b2 , which is to say, 3b2 = a2. This means that 3 divides a2. Since
3 is prime, the lemma tells us that 3 also divides a. So let k be an integer such that a = 3k. By substituting
this in, we get 3b2 = (3k)2 = 9k2. So b2 = 3k2. So 3 divides b2, which by the lemma again, means 3 divides
b.

Thus, 3 must be a common factor of a and b. But this contradicts the assumption that gcd(a,b) = 1. So
√

3
cannot be written as a ratio of positive integers in lowest terms, and therefore, is not rational.

Alternative solution to 4a (there are many ways to present the same underlying idea):

As before, assume, for the sake of a contradiction, that there are positive integers a and b such that
√

3 = a
b ,

which is to say, a2 = 3b2.

Let ea be the exponent of 3 in the prime factorization of a and let eb be the exponent of 3 in the prime
factorization of b.

Note that the exponent of 3 in the prime factorization of a2 is 2ea, which is even. But the exponent of 3
in the prime factorization of 3b2 is 1+ 2eb, which is odd. Since a2 was assumed to equal 3b2 (and every
positive integer has a unique prime factorization), we have reached a contradiction, and can conclude

√
3 is

irrational.

Solution to 4b:

Proof by induction:

Base Case: n = 0. In this case, 3n+1 = 30+1 = 3 and 23n
+1 = 230

+1 = 21 +1 = 3. 3 divides 3.

Inductive step: Let n be some nonnegative integer. Assume that 3n+1 divides 23n
+1. Now our goal will be

to show that 3n+2 divides 23n+1
+1.

Since 3n+1 divides 23n
+1, there is some integer k so that 23n

+1 = k ·3n+1. So 23n
= k ·3n+1−1. Now

23n+1
+1 =

(
23n

)3
+1 =

(
k ·3n+1−1

)3
+1 = k3 ·33n+3−3 · k2 ·32n+2 +3 · k ·3n+1−1+1

= 3n+2 (k3 ·32n+1− k2 ·3n+1 + k
)

So 3n+2 divides 23n+1
+1 as required to complete the induction. =
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