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1. TRUE or FALSE?: total 24 points, each part 3 points
For each of the questions below, answer TRUE or FALSE.
Clearly indicate your correctly formatted answer: this is what is to be graded.No need to justify!

Answer: Note that the answers provide explanations for your understanding, even though no such justifica-
tion was required

1. ∀x∃y [P(x)∨Q(y)] is equivalent to [∀xP(x)]∨ [∃yQ(y)].
Answer: TRUE. P(x) is independent of y, and Q(y) is independent of x. So the quantifiers can be
moved inside.

2. If P and Q are propositions, then (P∨Q)⇒ (¬Q) is always TRUE.
Answer: FALSE. Simplifies to ¬Q which is FALSE if Q is TRUE.

3. For the Stable Marriage Problem: A female-optimal pairing is male-pessimal.
Answer: TRUE. The notes have a proof showing that a male-optimal pairing is female-pessimal.
Switch the two roles.

4. In the Stable Marriage Algorithm (with men proposing), if W is last on every man’s preference list and
M is not last on any woman’s preference list, M cannot end up paired with W .

Answer: FALSE. Counterexample: Consider a 3x3 case:

A 1 2 3
B 2 1 3
C 1 2 3
1 A C B
2 B C A
3 A C B

5. The following statement is a proposition:
“There is a unique integer solution to the equation x2 = 4.”
Answer: TRUE. Its value happens to be false (x can be ±2). Note that x is not an unbound variable
here.

6. There exists a graph with 9 vertices, each of degree 3.
Answer: FALSE. The sum of the degrees would be 27 which cannot be 2|E|.

7. Consider an undirected graph G. If there is a (simple) path in G from vertex x to vertex y through
vertex z, and there is a (simple) path in G from y to x through z, then there is a cycle in G containing x,
y, and z.
Answer: FALSE. Consider a chain of edges, one end point being x, one being y and z in the middle.

8. If x≡ 5 (mod 9) and y≡ 4 (mod 9) then x+ y is divisible by 9.
Answer: TRUE. x = 9k+5, y = 9l +4, x+ y = 9(k+ l +1).
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2. Short Answers: 5x3=15 points Clearly indicate your correctly formatted answer: this is what is to be
graded.No need to justify!

1. Write the contrapositive of the following statement: If x2−3x+2 = 0, then x = 1 or x = 2
Answer: If x 6= 1 and x 6= 2, then x2−3x+2 6= 0.

2. A connected planar simple graph has 5 more edges than it has vertices. How many faces does it have?
Answer: 7. Use Euler’s formula.

3. An n-dimensional hypercube has 2n vertices. How long can the shortest (simple) path between any
two vertices in the hypercube be? (The length of a path is the number of edges in it.)
Answer: n. Each edge corresponds to flipping a bit. Need to flip at most n bits to get from one bit
string to another.
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4. TRUE or FALSE: Suppose you are given two trees T1 =(V1,E1) and T2 =(V2,E2) that share no vertices
or edges. If you add an edge e connecting some vertex in V1 to some vertex in V2, then the resulting
graph (V1∪V2,E1∪E2∪{e}) is also a tree.
Answer: TRUE.

5. TRUE or FALSE: In stable marriage, if Man M is at the top of Woman W ’s ranking but the bottom of
every other woman’s ranking, then every stable matching must pair M with W .
Answer: FALSE.

A 1 2
B 2 1
1 A B
2 B A
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3. Short Proofs: 4+4+4+4+4=20 points

1. Prove that 5
√

2 is irrational.
Answer: Proof by contradiction. Suppose not. Then 5

√
2 = a

b where a,b ∈ Z. Thus,
√

2 = a
5b ,

contradicting the fact that
√

2 is irrational.

2. A Pythagorean triple (a,b,c) has three natural numbers a,b,c such that a2+b2 = c2. Prove that at least
one of a,b,c must be even.
Answer: Proof by contradiction. Assume that none of a, b, and c are even. We will write a = 2k+1,
b = 2l +1, and c = 2m+1 where k, l,m ∈ N. Rewriting the original formula, we get:

c2 = a2 +b2 = (2k+1)2 +(2l +1)2 = 4k2 +4k+1+4l2 +4l +1 = 2(2k2 +2k+2l2 +2l +1)

Since natural numbers are closed under addition and multiplication, (2k2 + 2k + 2l2 + 2l + 1) ∈ N.
Therefore, c2 must be an even number. However, we also know that c = 2m+1, so

c2 = (2m+1)2 = 4m2 +4m+1 = 2(2m2 +2m)+1

This means that c2 must be an odd number. Since c2 cannot be both even and odd, we have reached a
contradiction. Therefore, at least one of a, b, and c is even.

3. Prove or disprove: If all vertices of an undirected graph have degree 4, the graph must be the complete
graph on 5 vertices, K5.
Answer: The statement is FALSE. Consider the 4-dimensional hypercube. Each vertex has exactly 4
neighbors, but it is not K5.
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4. Prove that for any integer n, if n3 +2n+3 is odd, then n is even.
Answer: Proof by contraposition. Suppose n is an odd integer. We want to show that n3 + 2n+ 3
is even. Since n is odd, we can express it as n = 2k+ 1 for some integer k. It’s easy to see that the
product of odd integers are odd, or in this case, we can show arithmetically that n3 = (2k + 1)3 =
8k3+12k2+6k+1, which is odd. 2n is even. The sum of n3, an odd number, 2n and even number, and
3, another odd number, is even. Thus, we proved that “n3 + 2n+ 3 is odd” is false, which concludes
the proof.

5. Recall that an Eulerian walk in an undirected graph G is a walk in G that traverses each edge exactly
once.
Consider n undirected graphs G1, G2, ... Gn that share no vertices or edges and have exactly two odd-
degree vertices each. Prove that it is possible to construct an Eulerian tour visiting all of G1, G2, ... Gn

using only n additional edges to connect them.
Answer: If G has an Eulerian walk, it must have exactly two vertices with odd degree which are the
start and end points of an Eulerian walk. (This was proved in discussion section, but easy to show.)
We can prove this using induction.
Consider the base case to be one graph G1. We can use the one edge to connect its two odd-degree
vertices.
To convince ourselves, we can consider a second base case, G1,G2. So let these vertices (start and end
points of the Eulerian walk) be v1s and v1t in G1, and v2s and v2t in G2. Connect v1t to v2s and v2t to
v1s. That yields an Eulerian tour for the whole graph.
The inductive step follows, where we link each Gi to the Gi+1 graph by connecting their odd-degree
vertices, and the Gn graph to G1 in the same manner.
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4. Checking Proofs:3+3= 6 points

Each of the proofs below has a fallacy on a single line. Find the fallacy, and explain your answer briefly.

1. Proposition: For any integers x, y, and n, if x− y is divisible by n, then so is x+ y.

Proof: If x− y is divisible by n, then we can write x− y≡ 0 (mod n) or x≡ y (mod n).
Squaring both sides, we get x2 ≡ y2 (mod n).
Taking square roots, we get x≡−y (mod n).
Rewriting, we get x+ y≡ 0 (mod n), or x+ y is divisible by n.
Answer: Cannot “take square roots” in the way we did.

2. Proposition: Let a be a two digit (decimal) number and b be formed by reversing the digits of a. Then
the digits of a2 are simply those of b2 reversed.
(For example, if a = 10, b = 01, then a2 = 100,b2 = 001. Similarly, if a = 12,b = 21, we have
a2 = 144,b2 = 441.)

Proof: Let a = 10x+ y where x,y are decimal digits. Then b = 10y+ x.
This gives us:

a2 = 100x2 +20xy+ y2 = 100x2 +10(2xy)+ y2

b2 = 100y2 +20yx+ x2 = 100y2 +10(2yx)+ x2

Thus, the digits of a2 are x2, 2xy, and y2 and similarly the digits of b2 are y2, 2yx, and x2, exactly
reverse.
This yields the desired result.
Answer: Cannot conclude that digits of a2 are x2, 2xy, and y2 (and similarly of b2) when (x2∨2xy∨
y2)> 9.
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5. Proofs about XOR: 3+7= 10 points

Recall from Homework 1 the XOR operator, written ⊕: P⊕Q is TRUE if and only if exactly one of P and
Q is TRUE and the other is FALSE.

1. Show that ⊕ is associative: given three propositions P1, P2, P3, that P1⊕ (P2⊕P3)≡ (P1⊕P2)⊕P3.
Answer: One way to solve is using a truth table.

2. Now, given n propositions P1, P2, . . ., Pn, n ≥ 2, we can construct the XOR of all of them: P1⊕P2⊕
P3⊕ . . .⊕Pn. (Since ⊕ is associative, it does not matter how we put parentheses around them, so we
omit this.) Call this Qn; that is, Qn = P1⊕P2⊕P3⊕ . . .⊕Pn.
A satisfying assignment to Qn is an assignment of TRUE/FALSE to the propositions P1,P2, . . . ,Pn such
that Qn is TRUE. A falsifying assignment to Qn is a TRUE/FALSE assignment to the Pis such that Qn

is FALSE.
Prove that for all n, Qn has exactly 2n−1 satisfying assignments.
Answer: Base case: n = 2: Exactly 2 assignments.
Induction hypothesis: Qk has exactly 2k−1 satisfying assignments.
Induction step: Assuming the induction hypothesis, we need to show that Qk+1 has exactly 2k satisfying
assignments.
Notice that Qk+1 = Qk⊕Pk+1. Consider an arbitrary satisfying assignment to Qk, say ak. To this, add
Pk+1 = FALSE. Then (ak,FALSE) is a satisfying assignment to Qk+1. But (ak,T RUE) is a falsifying
assignment. Similarly, for every falsifying assignment bk to Qk, adding Pk+1 = T RUE makes it a
satisfying assigment, whereas Pk+1 +FALSE makes it a falsifying assignment.
Thus, the total number of satisfying assignments are 2k−1 +2k−1 = 2k.
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6. Perfect Matching in Graphs: 8+4+8=20 points

For an undirected (simple) graph with n vertices, where n is even, a perfect matching is a set of n/2 edges
such that every vertex of the graph is incident to exactly one of the edges in the set.

1. Prove or disprove: Every tree has at most one perfect matching.
Answer: True.

Method 1: Let M, M′ be perfect matchings in the tree T = (V,E) and consider the graph on V with
edge set M∪M′. Since M and M′ both cover all the vertices, every connected component of this new
graph is either a single edge (common to both M and M′) or a cycle. Since T is a tree, there can be no
cycle, so we conclude that M = M′.

Method 2: Proof by induction. Strengthen the inductive hypothesis to say that every forest with at
most k vertices has at most one perfect matching. We have for n = 1, no perfect matchings exist and
for n = 2, exactly one perfect matching exists (if the nodes are connected) or no perfect matchings (if
they are disconnected). Consider any forest on k+ 1 nodes. There exists some leaf node l, which in
any perfect matching must be matched with its parent node (because that is the only edge incident to l).
Delete l and its parent and all incident edges to those nodes from the forest. We are left with another
forest (we cannot create any cycles by deleting edges and nodes), in which every tree has ≤ k− 1
nodes. We know by the inductive hypothesis that each of these trees has at most one perfect matching,
so the original forest has at most one perfect matching (the unique perfect matchings of each tree in
the forest and the edge connecting l to its parent). Note: Can you figure out how to make the induction
work if you do not strengthen the inductive hypothesis?

2. Prove or disprove: If a graph has a perfect matching, it is 2-colorable. (That is, each vertex can be
assigned one of two colors so that no two adjacent vertices have the same color.)
Answer: False. Consider K4.
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3. Prove that if G has the following property P:

G is a simple graph with 2n (n≥ 2) vertices such that every vertex has degree ≥ n

then G has a perfect matching.
(Hint: Prove that all graphs satisfying P have a Hamiltonian cycle; we suggest a proof by contradiction
for this. Recall that a Hamiltonian cycle is one that visits each vertex exactly once.)
Answer: We will show that all graphs satisfying P have a Hamiltonian cycle. Once we have shown
this, we can take every second edge of the Hamiltonian cycle as our perfect matching.

Suppose that the above statement is false, i.e. there is a graph satisfying P which does not have a
Hamiltonian cycle. Let G′ be the largest such counterexample, in the sense that G′ has the greatest
number of edges out of any counterexample.

Claim: G′ has a Hamiltonian path.
Proof: If G′ = (V,E) does not have a Hamiltonian path, consider the longest possible path v0, . . . ,vk.
There must be some vertex u that the longest path does not visit. Consider the graph G′′ = (V,E ∪
{vk,u}) formed by adding the edge {vk,u} to G′. Adding this edge cannot create a Hamiltonian cycle
(otherwise, its removal would imply that G′ had a Hamiltonian path). We see that G′′ is a graph sat-
isfying P with more edges than G′, which contradicts our choice of G′ as the largest counterexample.
This establishes the claim: G′ must have a Hamiltonian path.

Claim: G′ has a Hamiltonian cycle.
Proof: Let v1, . . . ,v2n be the Hamiltonian path of G′. If {v1,v2n} is an edge, then we are done: G′

has a Hamiltonian cycle. Otherwise, v1 has n neighbors in v2, . . . ,v2n−1, and so does v2n. This is
only possible if there exists an index i such that v2n is adjacent to vi and v1 is adjacent to vi+1. Then,
v1,v2, . . . ,vi,v2n,v2n−1, . . . ,vi+1 is our Hamiltonian cycle.

However, G′ was supposed to be a counterexample! Contradiction.

Remark: The statement “if G is a simple graph with 2n, n≥ 2, where every vertex has degree at least
n, then G has a Hamiltonian cycle” is a theorem first proven by Dirac. There are a few other ways
to prove this statement. One way is to induct on the length of the longest path of the graph, showing
that every path can be extended into a Hamiltonian cycle. (The details are tricky.) Another method is
to consider the longest path, show that the path can be made into a cycle, and then to prove that this
cycle must be Hamiltonian. (The argument goes: pick a vertex lying outside of this cycle, show that
the vertex is connected to the cycle, but then the path which starts at this vertex and follows the cycle
is a longer path than the one we initially considered.) Our choice of G′ as the largest counterexample
eliminated some of the complications of the proof, effectively reducing the proof to the implication “G
has a Hamiltonian path and G satisfies P”⇒ “G has a Hamiltonian cycle”.
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7. Stable Marriage Problem: 3+7=10 points

Consider the following stable marriage instance.

Man Women
A 2 4 1 3
B 3 1 4 2
C 1 4 2 3
D 3 4 2 1

Woman Men
1 A C B D
2 B C D A
3 B A C D
4 B A D C

1. List all the rogue couples for the following pairing: (A,1), (B,2), (C,3), (D,4)

Answer: (B,3),(A,4),(B,4)

2. For each woman, find her optimal man and her pessimal man. Show all your work and justify your
answer.
Answer: Run the algorithm with women proposing (the algorithm is now female-optimal, so it
matches each woman to her optimal man):

Day 1 Day 2 Day 3 Day 4
A 1© 1 4© 4© 4©
B 2 3© 4 3© 3© 3©
C 2© 1© 2 1©
D 2©

Now run the algorithm with men proposing (the algorithm is male-optimal and female-pessimal, so it
matches each woman to her pessimal man):

Day 1 Day 2
1 C© C©
2 A© A©
3 B© D B©
4 D©

Final Answer:
Woman Optimal Man Pessimal Man

1 C C
2 D A
3 B B
4 A D
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8. Boolean Division: 10+10=20 points

Given predicates F(x) and D(x), we say that D(x) is a Boolean divisor of F(x) if there exist predicates Q(x)
and R(x) such that ∀x, F(x) = {[D(x)∧Q(x)]∨R(x)}, where ∃x,{D(x)∧Q(x) 6= FALSE}.
(In other words, a Boolean divisor is like integer division, where multiplication is replaced by AND, and
addition by OR. Also note that we use “=” to mean propositional equivalence.)

A predicate D(x) of F(x) is said to be a factor of F(x) if there exists a predicate Q(x) such that ∀x, F(x) =
[D(x)∧Q(x)].

[Hint for both parts below: try using identities that simplify propositional forms.]

1. Prove that for any two predicates F(x) and D(x), D(x) is a factor of F(x) if and only if ∀x,{F(x)∧
(¬D(x)) = FALSE}.
Answer: Only if part is easy: F(x)∧ (¬D(x)) simplifies to FALSE for all x.
If part: Write F(x) = F(x)∧ [D(x)∨¬D(x)] = [F(x)∧D(x)]∨ [F(x)∧¬D(x)]. The second term on the
RHS simplifies to FALSE, and we can take Q(x) = F(x) to yield the desired result.

2. Prove that for any two predicates F(x) and D(x), D(x) is a Boolean divisor of F(x) if and only if
∃x,{F(x)∧D(x) 6= FALSE}.
Answer: (only if part): ∀x,F(x) = [D(x)∧Q(x)]∨R(x). Thus, for all x, F(x)∧D(x) = [D(x)∧Q(x)]∨
[D(x)∧R(x)]. Since ∃x, D(x)∧Q(x) 6= FALSE, there must exists x such that F(x)∧D(x) 6= FALSE.
(if part): Rewrite F(x) as [F(x)∧D(x)] + [F(x)∧¬D(x)]. Take Q(x) = F(x), which is OK, since
∃x,F(x)∧D(x) 6= FALSE. Also take R(x) = [F(x)∧¬D(x)]. This proves the result.

12



SID:

13



SID:

(Scratch space)
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