
CS 70 First Midterm 3 Mar 2011

NAME (1 pt):

SID (1 pt):

TA (1 pt):

Name of Neighbor to your left (1 pt):

Name of Neighbor to your right (1 pt):

Instructions: This is a closed book, closed calculator, closed computer, closed network, open
brain exam, but you are permitted a 1 page, double-sided set of notes, large enough to read
without a magnifying glass.

You get one point each for filling in the 5 lines at the top of this page. Each other question
is worth 20 points.

Write all your answers on this exam. If you need scratch paper, ask for it, write your name
on each sheet, and attach it when you turn it in (we have a stapler).
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Question 1 (20 points) Logic.
For each of the following propositions, circle either True if it is always true, False if it is

always false, or Depends if its value could be either true or false, depending on more informa-
tion. For example, if we are given no information about propositions p and q, then for p ∨ q
the right answer would be Depends. You do not have to justify your answer. Each part is
worth 5 points, but we will subtract 2 points for the wrong answer, so guessing
may not help. We let N = {0, 1, 2, ...} denote the natural numbers, Q denote the rational
numbers, and p⊗ q denote ¬(p ∨ q).

1.1 (5 points). True False Depends. Here x, y and z denote propositions, each of
which could be True or False:

((x⊗ y) ∨ ¬z)→ (z → ¬y)

Answer: True, because

((x⊗ y) ∨ ¬z)→ (z → ¬y)⇐⇒
(¬(x ∨ y) ∨ ¬z)→ (z → ¬y)⇐⇒
(¬(x ∨ y) ∨ ¬z)→ (¬z ∨ ¬y)⇐⇒
¬(¬(x ∨ y) ∨ ¬z) ∨ (¬z ∨ ¬y)⇐⇒

((x ∨ y) ∧ z) ∨ (¬z ∨ ¬y)⇐⇒
(x ∧ z) ∨ (y ∧ z) ∨ (¬z ∨ ¬y)⇐⇒

(x ∧ z) ∨ (y ∧ z) ∨ ¬(z ∧ y)⇐⇒
(x ∧ z) ∨ s ∨ ¬s where s = (z ∧ y)⇐⇒

(x ∧ z) ∨ True⇐⇒ True

1.2 (5 points). True False Depends.

∀a ∈ N ∃b ∈ Q (a = b2)

Answer: False: This statement says that all natural numbers have rational square roots,
but we know, for example, that if a = 2 then b = 21/2 is not rational.

1.3 (5 points). True False Depends. Here R(k) and S(k) are propositions that
depend on the natural number k.

[∀k ∈ N (¬R(k)→ S(k))] ∨ [∃j ∈ N (¬S(j) ∧ ¬R(j))]

Answer: True: This proposition of the form p ∨ q; negating p we get

¬p⇐⇒ ¬[∀k ∈ N (¬R(k)→ S(k))]⇐⇒

[∃k ∈ N ¬(¬R(k)→ S(k))]⇐⇒

[∃k ∈ N ¬(¬¬R(k) ∨ S(k))]⇐⇒

[∃k ∈ N ¬(R(k) ∨ S(k))]⇐⇒

[∃k ∈ N (¬R(k) ∧ ¬S(k))]⇐⇒ q

so the whole proposition is of the form p ∨ ¬p which is true.
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1.4 (5 points). True False Depends.

¬[(p ∨ q ∨ r) ∧ (¬q ∨ p ∨ ¬r) ∧ (¬r ∨ p ∨ q) ∧ (¬q ∨ r ∨ p)]

Answer: Depends: Simplifying the proposition gives us

¬[(p ∨ q ∨ r) ∧ (¬q ∨ p ∨ ¬r) ∧ (¬r ∨ p ∨ q) ∧ (¬q ∨ r ∨ p)]⇐⇒
¬(p ∨ q ∨ r) ∨ ¬(¬q ∨ p ∨ ¬r) ∨ ¬(¬r ∨ p ∨ q) ∨ ¬(¬q ∨ r ∨ p)⇐⇒
(¬p ∧ ¬q ∧ ¬r) ∨ (q ∧ ¬p ∧ r) ∨ (r ∧ ¬p ∧ ¬q) ∨ (q ∧ ¬r ∧ ¬p)⇐⇒

¬p ∧ [(¬q ∧ ¬r) ∨ (q ∧ r) ∨ (r ∧ ¬q) ∨ (q ∧ ¬r)]⇐⇒
¬p ∧ True⇐⇒ ¬p

so it depends on p.
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Question 1 (20 points) Logic.
For each of the following propositions, circle either True if it is always true, False if it is

always false, or Maybe if its value could be either true or false, depending on more information.
For example, if we are given no information about propositions x and y, then for x ∧ y the
right answer would be Maybe. You do not have to justify your answer. Each part is worth
5 points, but we will subtract 2 points for the wrong answer, so guessing may not
help. We let N = {0, 1, 2, ...} denote the natural numbers, Q denote the rational numbers,
and p ↑ q denote ¬(p ∨ q).

1.1 (5 points). True False Maybe.

∀r ∈ N ∃s ∈ Q (s2 = r)

Answer: False: This statement says that all natural numbers have rational square roots,
but we know, for example, that if r = 2 then s = 21/2 is not rational.

1.2 (5 points). True False Maybe. Here T (i) and V (i) are propositions that depend
on the natural number i.

[∀i ∈ N (¬T (i)→ V (i))] ∨ [∃m ∈ N (¬V (m) ∧ ¬T (m))]

Answer: True: This proposition of the form p ∨ q; negating p we get

¬p⇐⇒ ¬[∀i ∈ N (¬T (i)→ V (i))]⇐⇒

[∃i ∈ N ¬(¬T (i)→ V (i))]⇐⇒

[∃i ∈ N ¬(¬¬T (i) ∨ V (i))]⇐⇒

[∃i ∈ N ¬(T (i) ∨ V (i))]⇐⇒

[∃i ∈ N (¬T (i) ∧ ¬V (i))]⇐⇒ q

so the whole proposition is of the form p ∨ ¬p which is true.

1.3 (5 points). True False Maybe.

¬[(¬c ∨ d ∨ ¬b) ∧ (¬c ∨ ¬b ∨ ¬d) ∧ (¬d ∨ ¬b ∨ c) ∧ (¬b ∨ c ∨ d)]

Answer: Maybe: Simplifying the proposition gives us

¬[(¬b ∨ c ∨ d) ∧ (¬c ∨ ¬b ∨ ¬d) ∧ (¬d ∨ ¬b ∨ c) ∧ (¬c ∨ d ∨ ¬b)]⇐⇒
¬(¬b ∨ c ∨ d) ∨ ¬(¬c ∨ ¬b ∨ ¬d) ∨ ¬(¬d ∨ ¬b ∨ c) ∨ ¬(¬c ∨ d ∨ ¬b)⇐⇒
(¬¬b ∧ ¬c ∧ ¬d) ∨ (c ∧ ¬¬b ∧ d) ∨ (d ∧ ¬¬b ∧ ¬c) ∨ (c ∧ ¬d ∧ ¬¬b)⇐⇒

¬¬b ∧ [(¬c ∧ ¬d) ∨ (c ∧ d) ∨ (d ∧ ¬c) ∨ (c ∧ ¬d)]⇐⇒
b ∧ True⇐⇒ b

so it depends on b.

1.4 (5 points). True False Maybe. Here r, s and t denote propositions, each of
which could be True or False:

(¬t ∨ (r ↑ s))→ (t→ ¬s)
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Answer: True, because

((r ↑ s) ∨ ¬t)→ (t→ ¬s)⇐⇒
(¬(r ∨ s) ∨ ¬t)→ (t→ ¬s)⇐⇒
(¬(r ∨ s) ∨ ¬t)→ (¬t ∨ ¬s)⇐⇒
¬(¬(r ∨ s) ∨ ¬t) ∨ (¬t ∨ ¬s)⇐⇒

((r ∨ s) ∧ t) ∨ (¬t ∨ ¬s)⇐⇒
(r ∧ t) ∨ (s ∧ t) ∨ (¬t ∨ ¬s)⇐⇒

(r ∧ t) ∨ (s ∧ t) ∨ ¬(t ∧ s)⇐⇒
(r ∧ t) ∨ w ∨ ¬w where w = (t ∧ s)⇐⇒

(r ∧ t) ∨ True⇐⇒ True
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Question 2 (20 points) Induction.
Prove, using induction, that the following proposition is true for all positive integers n:
P (n) = “

∑n
i=1 i

3 = (
∑n

i=1 i)
2.”

Question 2.1 (4 points): State and prove the base case for the induction.
Answer:

1∑
i=1

i3 = 13 = 1

= 12 =

(
1∑

i=1

i

)2

.

Question 2.2 (16 points): State and prove the inductive step, and thus complete the
proof. Hint: First find (and prove) a formula for

∑n
i=1 i, which we proved in two different

ways in lecture.
Answer:

First we show that s =
∑n

i=1 i = n(n+1)
2 . One proof:

s = 1 + 2 + · · ·+ (n− 1) + n

+s = n + (n− 1) + · · ·+ 2 + 1

2s = (n + 1) + (n + 1) + · · ·+ (n + 1) + (n + 1)

s =
n(n + 1)

2

For an inductive proof, see Note 3. Now we rewrite our proposition as

P (n) =“
∑n

i=1 i
3 =

(
n(n+1)

2

)2
.”

Assume P (n) is true:

P (n) ⇒
n+1∑
i=1

i3 =
n∑

i=1

i3 + (n + 1)3

=

(
n (n + 1)

2

)2

+ (n + 1)3

= (n + 1)2
[
n2

4
+ (n + 1)

]
= (n + 1)2

n2 + 4n + 4

4

=
(n + 1)2 (n + 2)2

4

=

(
(n + 1) ((n + 1) + 1)

2

)2

⇒ P (n + 1)

thus completing the proof.
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Question 2 (20 points) Induction.
Prove, using induction, that the following equality is true for all positive integers m:[∑m

j=1 j
]2

=
∑m

j=1 j
3.

Question 2.1 (4 points): State and prove the base case for the induction.
Answer:

1∑
j=1

j3 = 13 = 1

= 12 =

 1∑
j=1

j

2

.

Question 2.2 (16 points): State and prove the inductive step, and thus complete the
proof. Hint: First find (and prove) a formula for

∑m
j=1 j, which we proved in two different

ways in lecture.
Answer:

First we show that s =
∑m

j=1 j = m(m+1)
2 . One proof:

s = 1 + 2 + · · ·+ (m− 1) + m

+s = m + (m− 1) + · · ·+ 2 + 1

2s = (m + 1) + (m + 1) + · · ·+ (m + 1) + (m + 1)

s =
m(m + 1)

2

For an inductive proof, see Note 3. Now we rewrite our proposition as

P (m) =“
∑m

j=1 j
3 =

(
m(m+1)

2

)2
.”

Assume P (m) is true:

P (m) ⇒
m+1∑
j=1

j3 =
m∑
j=1

j3 + (m + 1)3

=

(
m (m + 1)

2

)2

+ (m + 1)3

= (m + 1)2
[
m2

4
+ (m + 1)

]
= (m + 1)2

m2 + 4m + 4

4

=
(m + 1)2 (m + 2)2

4

=

(
(m + 1) ((m + 1) + 1)

2

)2

⇒ P (m + 1)

thus completing the proof.
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Question 3 (20 points) Stable Marriage.

1. (10 points) Consider an instance of the Stable Marriage problem in which the men are
{1, 2, 3, 4}, the women are {A,B,C,D}, and the preference lists (from most preferred on
the left to least preferred on the right) are

Men (1-4) Women (A-D)

1: A B D C A: 2 3 4 1
2: C B D A B: 1 4 2 3
3: D C B A C: 1 4 2 3
4: D C A B D: 1 2 3 4

Find a female-optimal pairing. Write your answer in the following box: (1 , ) (2 , ) (3 , ) (4 , )

Who are the persons who have been proposed to by the end of round 2, and to whom
have they said ‘maybe’ in round 2? Write your answer in the following box, as a list of
pairs: (person proposed to, proposer). For example, (x,y) would mean y proposed to x
in round 2.
[ ]

Answer:
(1,B) (2,D) (3,A) (4,C)

[(1,B), (2,D), (3, no one yet), (4,C)]

2. (10 points) Given n men and n women, for any n ≥ 2, what is the minimum number of
stable pairings that must exist for any sets of preferences? Justify your answer with a
specific example attaining the minimum.

Answer: One pairing: We know that the Stable Marriage algorithm always terminates
with one stable pairing, so we need to show that there is a set of preferences for which
there is only one stable pairing. Let the Men be M1, ...,Mn and the Women be W1, ...,Wn.
Suppose that for every 1 ≤ i ≤ n, Mi’s top-ranked person is Wi, and Wi’s top-ranked
person is Mi. Then the pairing that matches up all (Mi,Wi) is the only stable pairing,
because if Mi and Wi are not paired, they will be a rogue couple.
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Question 3 (20 points) Stable Marriage.

1. (10 points) Consider an instance of the Stable Marriage problem in which the men are
{1, 2, 3, 4}, the women are {W,X, Y, Z}, and the preference lists (from most preferred on
the left to least preferred on the right) are

Men (1-4) Women (W-Z)

1: Y X Z W W: 4 3 2 1
2: Z X Y W X: 4 2 1 3
3: W Y X Z Y: 3 4 1 2
4: Z W Y X Z: 2 3 1 4

Find a female-optimal pairing. Write your answer in the following box: (1 , ) (2 , ) (3 , ) (4 , )

Who are the persons who have been proposed to by the end of round 2, and to whom
have they said ‘maybe’ in round 2? Write your answer in the following box, as a list of
pairs: (person proposed to, proposer). For example, (x,y) would mean y proposed to x
in round 2.
[ ]

Answer:
(1,X) (2,Z) (3,Y) (4,W)

[(1,no one yet), (2,Z), (3, Y), (4,W)]

2. (10 points) Given m men and m women, for any m ≥ 2, what is the minimum number
of stable pairings that must exist for any sets of preferences? Justify your answer with
a specific example attaining the minimum.

Answer: One pairing: We know that the Stable Marriage algorithm always termi-
nates with one stable pairing, so we need to show that there is a set of preferences for
which there is only one stable pairing. Let the Men be M1, ...,Mm and the Women be
W1, ...,Wm. Suppose that for every 1 ≤ i ≤ m, Mi’s top-ranked person is Wi, and Wi’s
top-ranked person is Mi. Then the pairing that matches up all (Mi,Wi) is the only
stable pairing, because if Mi and Wi are not paired, they will be a rogue couple.
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Question 4 (20 points) Modular Arithmetic.
Question 4.1 (7 points): Use the extended Euclidean algorithm to find gcd(7, 47) and

integers x and y such that 7 · x + 47 · y = gcd(7, 47). Show the intermediate results of the
algorithm. Fill in your answers in the boxes below:

gcd(7, 47) = x = y =

Answer: e-gcd(47,7)
calls e-gcd(7,5)
calls e-gcd(5,2)
calls e-gcd(2,1)
calls e-gcd(1,0)
returns 1 = 1*1 + 0*0
returns 1 = 2*0 + 1*1
returns 1 = 5*1 + 2*(-2)
returns 1 = 7*(-2) + 5*3
returns 1 = 47*3 + 7*(-20)
so x = −20 and y = 3 and gcd(7, 47) = 1.

Question 4.2 (3 points): Solve 47 · z ≡ 4 mod 7. Show your work. Fill in your answer
in the box below:

z =
Answer: Multiply both sides of the congruence by the multiplicative inverse of 47 modulo 7,
i.e. 3, to get 3 · 47z ≡ 1 · z ≡ z ≡ 3 · 4 ≡ 5 mod 7.

Question 4.3 (10 points): How many distinct solutions of 33
33

3

·z+43 ≡ 22
22

2

mod 21
are there, modulo 21? Justify your answer. You do not need to find solutions explicitly, just
count them. Fill in your answer in the box below:

#solutions =

Answer: First note that 33
33

3

= 3ˆ(3ˆ(3ˆ(3ˆ3))), not (((3ˆ3)ˆ3)ˆ3)ˆ3 = 381; the order

of parentheses is important. The gcd of 33
33

3

and 21 is 3. So by the extended Euclidean

algorithm we can choose z and y to make 33
33

3

· z + 21 · y equal to any integer multiple of 3,

and only integer multiples of 3. So the question is whether 22
22

2

− 43 is an integer multiple of

3: We confirm this by computing 22
22

2

−43 ≡ (−1)2
22

2

−1 ≡ (−1)an even number−1 ≡ 1−1 ≡ 0
mod 3. So there is at least one solution z. Furthermore, if z is a solution, so is z + 7k for any

integer k, since 33
33

3

· (z + 7k) ≡ 33
33

3

· z mod 21 for any k. Thus there are at least 3 distinct
solutions, for k = 0, 1, 2. These are in fact all the solutions, because if z1 and z2 are solutions,

then 33
33

3

(z1 − z2) ≡ 0 mod 21, so z1 ≡ z2 mod 7.
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Question 4 (20 points) Modular Arithmetic.
Question 4.1 (7 points): Use the extended Euclidean algorithm to find gcd(11, 53) and

integers x and y such that 11 · x + 53 · y = gcd(11, 53). Show the intermediate results of the
algorithm. Fill in your answers in the boxes below:

gcd(11, 53) = x = y =

Answer: e-gcd(53,11)
calls e-gcd(11,9)
calls e-gcd(9,2)
calls e-gcd(2,1)
calls e-gcd(1,0)
returns 1 = 1*1 + 0*0
returns 1 = 2*0 + 1*1
returns 1 = 9*1 + 2*(-4)
returns 1 = 11*(-4) + 9*5
returns 1 = 53*5 + 11*(-24)
so x = −24 and y = 5 and gcd(11, 53) = 1.

Question 4.2 (3 points): Solve 53 ·a ≡ 3 mod 11. Show your work. Fill in your answer
in the box below:

a =
Answer: Multiply both sides of the congruence by the multiplicative inverse of 53 modulo
11, i.e. 5, to get 5 · 53a ≡ 1 · a ≡ a ≡ 5 · 3 ≡ 4 mod 11.

Question 4.3 (10 points): How many distinct solutions of 55
55

5

·r+16 ≡ 44
44

4

mod 35
are there, modulo 35? Justify your answer. You do not need to find solutions explicitly, just
count them. Fill in your answer in the box below:

#solutions =

Answer: First note that 33
33

3

= 3ˆ(3ˆ(3ˆ(3ˆ3))), not (((3ˆ3)ˆ3)ˆ3)ˆ3 = 381; the order

of parentheses is important. The gcd of 55
55

5

and 35 is 5. So by the extended Euclidean

algorithm we can choose r and y to make 55
55

5

· r + 35 · y equal to any integer multiple of 5,

and only integer multiples of 5. So the question is whether 44
44

4

− 16 is an integer multiple of

5: We confirm this by computing 44
44

4

−16 ≡ (−1)4
44

4

−1 ≡ (−1)an even number−1 ≡ 1−1 ≡ 0
mod 5. So there is at least one solution r. Furthermore, if r is a solution, so is r + 7k for

any integer k, since 55
55

5

· (r + 7k) ≡ 55
55

5

· r mod 35 for any k. Thus there are at least 5
distinct solutions, for k = 0, 1, 2, 3, 4. These are in fact all the solutions, because if r1 and r2

are solutions, then 55
55

5

(r1 − r2) ≡ 0 mod 35, so r1 ≡ r2 mod 7.
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Question 5 (20 points) RSA.

5.1 (10 points). Alice wants to receive an encrypted message using RSA from Bob, so
she chooses p = 11 and q = 3.

(a) What values of e can Alice use for the public key?

Answer: e must be mutually prime with (p − 1)(q − 1) = 20 therefore e cannot
have a factor of 2 or 5 in it. Valid values for e are 1, 3, 7, 9, 11, 13, 17, 19 mod 20.

(b) Alice chooses e = 7. Find d.

Answer:
ed ≡ 1 mod 20

Without using extended gcd we can see that d = 3 is the inverse of 7 modulo 20
since 3 · 7 = 21.

5.2 (5 points). Bob sends Alice his public key (n = 65, e = 11), so Alice can send the
message m = 8. What encrypted value E(m) will Alice send back to Bob?

Answer:
E(m) = me mod n = 811 mod 65

81 ≡ 8 mod 65

82 ≡ 64 mod 65

≡ −1 mod 65

84 ≡ (−1)2 mod 65

≡ 1 mod 65

88 ≡ 1 mod 65

811 ≡ 88 · 82 · 81 mod 65

≡ 1 · −1 · 8 mod 65

≡ −8 mod 65

≡ 57 mod 65

Alice sends E(m) = 57

5.3 (5 points). Alice has a database of private information and she would like all the
values bi multiplied by x, but she doesn’t have the computing resources. Dave has a
cluster of computers that Alice would like to use without revealing any of the data to
Dave. Alice sends Dave her public key (n, e), the values in the database encrypted
with her public key E(bi), and the number encrypted with her public key E(x). How
can Dave calculate the encryption of database values multiplied by x, E(bix), without
Alice’s private key?

Answer: Dave can multiply E(x) by E(bi) modulo n to get E(bix).

E(bix) = (bix)e mod n

≡ (bi)
e(x)e mod n

≡ E(bi)E(x) mod n
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Question 5 (20 points) RSA.

5.1 (10 points). Alice wants to receive an encrypted message using RSA from Bob, so
she chooses p = 7 and q = 5.

(a) What values of e can Alice use for the public key?

Answer: e must be mutually prime with (p − 1)(q − 1) = 24 therefore e cannot
have a factor of 2 or 3 in it. Valid values for e are 1, 5, 7, 11, 13, 17, 19, 23 mod 24

(b) Alice chooses e = 5. Find d.

Answer:
ed ≡ 1 mod 24

Without using extended gcd we can see that d = 5 is the inverse of 5 modulo 24
since 5 · 5 = 25.

5.2 (5 points). Bob sends Alice his public key (n = 82, e = 11) so Alice can send the
message m = 9. What encrypted value E(m) will Alice send back to Bob?

Answer:
E(m) = me mod n = 911 mod 82

91 ≡ 9 mod 82

92 ≡ 81 mod 82

≡ −1 mod 81

94 ≡ (−1)2 mod 82

≡ 1 mod 82

98 ≡ 1 mod 82

911 ≡ 98 · 92 · 91 mod 82

≡ 1 · −1 · 9 mod 82

≡ −9 mod 82

≡ 73 mod 82

Alice sends E(m) = 73

5.3 (5 points). Alice has a database of private information and she would like all the
values pi multiplied by z, but she doesn’t have the computing resources. Dave has a
cluster of computers that Alice would like to use without revealing any of the data to
Dave. Alice sends Dave her public key (n, e), the values in the database encrypted
with her public key E(pi), and the number encrypted with her public key E(z). How
can Dave calculate the encryption of database values multiplied by z, E(piz), without
Alice’s private key?

Answer: Dave can multiply E(z) by E(pi) modulo n to get E(piz).

E(piz) = (piz)e mod n

≡ (pi)
e(z)e mod n

≡ E(pi)E(z) mod n
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Question 6 (20 points) Polynomials and Error Correcting Codes.

6.1 (6 points). In a programming assignment, you are asked to write a program that com-
putes

z = 2560 · x3 + 256 · x2 + 12 · x + 13

where x is the input to your program and z is the output of your program, both x
and z are 8-bit positive integers, and all arithmetic is done with 8-bit positive integers.
You overheard two of your friends planning to write a program to compute some linear
polynomial z = a1 · x+ a2, which they claimed would have the same output as the given
cubic polynomial. However, you didn’t hear the specific values a1 and a2 they discussed.

1. (5 points) Why do your friends think that a linear polynomial can be used in place of
the given cubic polynomial? If their program works, what are the smallest positive
values possible for a1 and a2?

Answer: Note that 256 = 28 and 2560 = 10 · 28. So, no matter what are x2 and
x3, they will have no effect on z due to arithmetic modulo 256, i.e. arithmetic with
8-bit integers. The only part that matters is 12x+ 13 which is a linear polynomial.

a1 = 12, and a2 = 13.

2. (1 point) Whether or not their program works, do you think this program would
run faster using a linear polynomial than using the cubic polynomial? Why?

Answer: Yes. It avoids computation of 2560 · x3 + 256 · x2 and so performs fewer
operations overall. This will make their code faster.

6.2 (14 points) Bob and Alice are lab partners. They are working with the following poly-
nomial (a, b, x are integers):

f(x) = ax6 + (a− b)x5 + 3ax4 + a2x3 + 2ab2x2 + (a + b)x + b3

Bob is performing an experiment in the machine room; his task is to measure parameters
a and b, then compute the coefficients of f(x), and send the coefficients to Alice over
an unreliable communication channel. Alice is sitting in the computer room; her task is
to receive the coefficients that Bob sends, then reconstruct the polynomial f(x). Now
suppose the channel can drop at most 4 integers in a message, but does not corrupt any.
So, for sending the coefficients Bob and Alice decide to use error correcting codes with
polynomials that they learnt in CS 70.

1. (2 points) Since f(x) is a degree-6 polynomial, Bob realizes that he needs to evaluate
the polynomial on at least 7 distinct points so that Alice can reconstruct all the
coefficients. How many integers should he send to Alice according to the scheme
they learnt?

Answer: 7 + 4 = 11

2. (2 points) Bob later realizes that all coefficients of f(x) depend only on a and b.
He can just send these two integers to Alice. She can compute the coefficients of
f(x) herself based on a and b sent by Bob, and this way she can reconstruct f(x)
herself. How many integers should Bob send across the channel now?

Answer: 2 + 4 = 6

3. (10 points) Suppose Bob has decided to send a and b to Alice across the channel and
has told Alice about his decision. Alice now receives the message (5,−, 11,−, 17, 20)
from Bob, where the integers in the message are values of a polynomial ax+b at the
points 1,2,3,4,5,6, and where ‘−’ means that the corresponding integer was dropped

14



by the channel. Show how she can use Lagrange interpolation to reconstruct the
polynomial f(x). Show all your work and the final polynomial f(x).

Answer: Two points are sufficient to reconstruct ay + b. Using Lagrange interpo-
lation with points (1, 5) and (3, 11), the polynomial that Bob sent is

5 · y − 3

1− 3
+ 11 · y − 1

3− 1
= 3y + 2

Hence a = 3, b = 2. Therefore, Alice will construct the following polynomial

f(x) = 3x6 + (3− 2)x5 + 33x4 + 32x3 + (2 · 3 · 22)x2 + (3 + 2)x + 23

= 3x6 + x5 + 27x4 + 9x3 + 24x2 + 5x + 8
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Question 6 (20 points) Polynomials and Error Correcting Codes.

6.1 (6 points). In a programming assignment, you are asked to write a program that com-
putes

z = 256 · y3 + 2560 · y2 + 16 · y + 17

where y is the input to your program and z is the output of your program, both y
and z are 8-bit positive integers, and all arithmetic is done with 8-bit positive integers.
You overheard two of your friends planning to write a program to compute some linear
polynomial z = b1 · y + b2, which they claimed would have the same output as the given
cubic polynomial. However, you didn’t hear the specific values b1 and b2 they discussed.

1. (5 points) Why do your friends think that a linear polynomial can be used in place of
the given cubic polynomial? If their program works, what are the smallest positive
values possible for b1 and b2?

Answer: Note that 256 = 28 and 2560 = 10 · 28. So, no matter what are y2 and
y3, they will have no effect on z due to arithmetic modulo 256, i.e. arithmetic with
8-bit integers. The only part that matters is 16y + 17 which is a linear polynomial.

b1 = 16, and b2 = 17.

2. (1 point) Whether or not their program works, do you think this program would
run faster using a linear polynomial than using the cubic polynomial? Why?

Answer: Yes. It avoids computation of 256 · y3 + 2560 · y2 and so performs fewer
operations overall. This will make their code faster.

6.2 (14 points) Bob and Alice are lab partners. They are working with the following poly-
nomial (c, d, y are integers):

g(y) = cy6 + (c + d)y5 + 5cy4 + d3y3 + 2c2y2 + dy + d2

Bob is performing an experiment in the machine room; his task is to measure parameters
c and d, then compute the coefficients of g(y), and send the coefficients to Alice over
an unreliable communication channel. Alice is sitting in the computer room; her task
is to receive the coefficients that Bob sends, then reconstruct the polynomial g(y). Now
suppose the channel can drop at most 4 integers in a message, but does not corrupt any.
So, for sending the coefficients Bob and Alice decide to use error correcting codes with
polynomials that they learnt in CS 70.

1. (2 points) Since g(y) is a degree-6 polynomial, Bob realizes that he needs to evaluate
the polynomial on at least 7 distinct points so that Alice can reconstruct all the
coefficients. How many integers should he send to Alice according to the scheme
they learnt?

Answer: 7 + 4 = 11

2. (2 points) Bob later realizes that all coefficients of g(y) depend only on c and d. He
can just send these two integers to Alice. She can compute the coefficients of g(y)
herself based on c and d sent by Bob, and this way she can reconstruct g(y) herself.
How many integers should Bob send across the channel now?

Answer: 2 + 4 = 6

3. (10 points) Suppose Bob has decided to send c and d to Alice across the channel and
has told Alice about his decision. Alice now receives the message (5,−,−, 11, 13, 15)
from Bob, where the integers in the message are values of a polynomial cx+d at the
points 1,2,3,4,5,6, and where ‘−’ means that the corresponding integer was dropped
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by the channel. Show how she can use Lagrange interpolation to reconstruct the
polynomial g(y). Show all your work and the final polynomial g(y).

Answer: Two points are sufficient to reconstruct cx + d. Using Lagrange interpo-
lation with points (1, 5) and (3, 11), the polynomial that Bob sent is

5 · x− 4

1− 4
+ 11 · x− 1

4− 1
= 2x + 3

Hence c = 2, d = 3. Therefore, Alice will construct the following polynomial

g(y) = 2y6 + (2 + 3)y5 + 52y4 + 33y3 + (2 · 22)y2 + 3y + 32

= 2y6 + 5y5 + 25y4 + 27y3 + 8y2 + 3y + 9
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