
1. A Modest Proposition: 3/3/3/3/3 Clearly indicate your correctly formatted answer: this is what is to
be graded.No need to justify!

You have Z = ∀x,(P(x) =⇒ (Q(x)∨R(x))). State in each case below whether Z is certainly true, certainly
false, or possibly true.

1. There is an x, such that P(x) is true and either Q(x) or R(x) is true.
Z could be true.
The existence of an x is consistent with Z being true since it satisfies the “for all” statement but doesn’t
guarantee that Z is true (because it was only shown for a particular value of x.

2. For every x, if R(x) is false then P(x) is false.
Z is always true.
If R(x) is true the statement is true. If R(x) is false, then P(x) is false, which makes the implication
vacuously true.

3. For every x where (¬Q(x)∧¬R(x)) is true, we have P(x) is false. Z is proven.
This statement says that for every x, the contrapositive of the statement in Z is true, thus, Z is true.

4. For every x such that Q(x) is false, then either R(x) is true or P(x) is false. Z is true.
This is a restatement of the statement in Z in or form.

5. There is an x such that Q(x) is false and R(x) is false and P(x) is true. Z is false.
This is the negation of Z.

2. Short Answer/True/False/Maybe: 3/2/2/2/3/2/2/2/2 Clearly indicate your correctly formatted answer:
this is what is to be graded.No need to justify!

1. Give a set of preferences, an unstable pairing for those preferences, and a rogue couple with respect to
your pairing. (Again, we are asking for an unstable pairing.)
For men A and B:
A: 1,2
B: 2,1

For women:
1: A,B
2: B,A

An unstable pairing is (A,2) and (B,1). A rogue couple is (A,1).

2. (True/False.) If the preference lists of the men are all the same, the men’s least favorite woman is
always paired with her least favorite man in the stable pairing returned by the traditional marriage
algorithm.
False: it could happen that the man she ends up with, while not so popular with everyone else, is her
favorite.

3. (True/False.) Any pairing where more than one man is matched to his least favorite partner is unstable.
False: Consider a two by two example where the men and women’s preference lists are mis-matched.
The woman optimal pairing has both men being matched to their least favorite partner.
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4. (True/False.) In a run of the TMA (the traditional marriage algorithm), on one day, if a woman acci-
dentally rejects a man she prefers to a man she keeps on the string, then the algorithm must terminate
with a rogue couple.
False. Some intution from the improvement lemma is that somebody better may come along, and she
may well reject the guy anyway. No foul, no harm.
A specific example is the two by two instance where men A, B, prefer woman 1, and C prefers woman
2, woman 1 prefers C then A then B. On the first day, woman 1, rejects A accidently, who then, on day
2, proposes to woman 2, who rejects C, who then asks woman 1. Woman 1 rejects B and B then, on
day 3, proposes to woman 2. Woman 2 chooses her favorite of A and B, and finally one asks woman
3. For our example, it will be her favorite. In this example, all the woman end up with their favorite
partner, and thus it is stable.
For the following questions. Consider a stable marriage instance on n men and n women: say one
forms a graph consisting of vertices for each man and woman, and an edge for the first preference
of each person. That is, if woman 1 prefers man A the most, there would be an edge (1,A) in the
resulting graph. Notice the graph may not be simple.

5. What is the maximum degree of the graph? (Short answer: an expression possibly involving n.)
n+1
If a woman is everyone’s favorite, her degree will be n due to their edges, and one more for her
edge. This is the maximum due to the fact that the woman can participate in at most n+1 edges; one
corresponding to her preference and one for each man’s first preference.

6. (True/False) If the maximum degree of the graph is two, the female optimal pairing pairs every female
with her favorite partner (favorite means first on her preference list).
True.
Since the maximum degree of the graph is two, and there are 2n edges and 2n vertices, every vertex
has degree 2 and the graph consists of disjoint cycles. Moreover, the graph is bipartite so the length of
the cycles are even.
In any cycle, every other edge corresponds to a woman’s favorite and forms a pairing of the elements
of the cycle. Thus, the woman’s favorites forms a pairing. It is clearly stable as no woman can be in a
rogue pair with respect to this pairing as she is totally happy.

7. (True/False) If the maximum degree of the graph is two, there are only two stable pairings.
False.
Consider a 3 men/women example where each man’s favorite lists that man as last, and each woman’s
favorite lists that woman as last.
The matching consisting of everyone’s second favorite is stable, along with the matching constiting of
the men’s favorites, and the one consisting of the women’s favorites.
That is, A : (1,2,3),B : (2,3,1),C(3,1,2) and 1 : (B,C,A),2 : (C,A,B),3 : (A,B,C). The graph consists
of edges (A,1),(1,B),(B,2),(2,C),(C,3),(3,A). The three stable pairings are the woman-optimal one
(1,B),(2,C),(3,A),the man-optimal one (A,1),(B,2),(C,3), and finally the middle one (A,2),(B,1),(C,3).
The final one is stable since each person’s favorite is the least favorite for the other person.
This ends the question on the first preference graph for stable marriage.

8. (True/False) If a|b and b|c then a|c. (Recall that x|y means that x divides y.)
True: b = ka and c = `b, so c = k`a, for integers k, `.

9. How many edges need to be removed from a 3-dimensional hypercube to get a tree? (Short answer: a
number.)

2



The 3 dimensional hypercube has 3(23)/2 = 12 edges and 8 vertices. A tree on 8 vertices has 7 edges,
so one needs to remove 5 edges.

3. More Short Answer: 3/3/3/3/3 Clearly indicate your correctly formatted answer: this is what is to be
graded.No need to justify!

1. If 13x = 5 (mod 46), what is x? (Short answer.) Compute the inverse of 13 (mod 46) using iterative
Euclid.

13(0)+46(1) = 46
13(1)+46(0) = 13
13(−3)+46(1) = 7
13(4)+46(−1) = 6
13(−7)+46(2) = 1

This gives an inverse of -7, which says x =−35 = 11 (mod 46). Checking, we get (13)(11) = 143 =
(3)×46+5 = 5 (mod 46).

2. What is the maximum number of solutions for x in the range {0, . . . ,N− 1} for any equation of the
form ax = b (mod N), when gcd(a,N) = d? (Short answer: an expression possibly involving N, a, b,
and/or d.)
The maximum number of solutions is d.
If b is a multiple of d, we are looking for solutions to ax = b+ kN for integer k. But all of them are
multiples of d, so we are looking for solutions to a′x = b′ (mod N′).
There is one solution to this equation modulo N′, since gcd(a′,N) = 1. Any solution of the form x+ iN′

remains a solution, and there are d values of i where x remains in the range {0, . . . ,N−1}.
3. What is 250 (mod 65)? (Short answer: a number between 0 and 64 inclusive.) 65 = 13×5

We know that a(p−1)(q−1) = 1 (mod pq), so we have that 248 = 1 (mod 65) and that 250 = 22 = 4
(mod 65).

4. What is the size of the range of the function f (x) = px (mod pq), where the domain is {1, . . . , pq−1}?
The range of a function is the set of values y, where f (x) = y where x is in the domain. (Note: the
set {0 mod 2,1 mod 2,2 mod 2} has size 2, since 0 = 2 mod 2.) (Short answer: an expression
possibly using p and/or q.)
Every term is a multiple of p and there are q multiples of p between 0 and pq−1, using the definition
that pq = 0 (mod 1). So we have q.
But actually, we made a mistake here, so we would take other answers such as q−1 as that would be
the answer for p = 1.

5. What is the smallest number of colors that can be used to properly color a tree? Recall that a proper
coloring is an assignment of colors to vertices where for each edge (u,v), u and v are assigned different
colors. (Short answer.)
One can two color a tree by coloring a vertex, v, red and removing it and all the adjacent edges. Each
adjacent neighbor is in a different connected component since a tree is acyclic.
Thus, we can two color (red and blue) the resulting components by induction. (The base case is a
single vertex, which is trivial.) Then we make each of the neighbors blue (by switching the red and
blue colors from the inductively assumed colorings if necessary). The edges in the components are two
colored by induction and the fact that switching a pair of colors preserves two coloring, and the edge
between v and its neighbors are two colored by construction: red for v and blue for each neighbor.

3



4. Some Proofs:3/6

1. Prove that for x,y ∈ Z, that if x− y > 536, then x > 268 or y <−268.
By contrapositive. If x≤ 268 and y≥−268, we have that −y≤ 268, and thus x+(−y)≤ 536. Thus,
we have proven the contrapositive and thus the statement is true.

2. Show by induction that ∑
n
i=1

1
i3 ≤ 2.

We will prove the stronger theorem that ∑
n
i=1

1
i3 ≤ 2− 1

n2 by induction.
Base case: For n = 1, 1≤ 2− 1

(1)3 = 1.

Induction hypothesis: ∑
k
i=1

1
i3 ≤ 2− 1

k2 .

∑
k+1
i=1

1
i3 ≤ (2− 1

k2 )+
1

(k+1)3 = 2− ( 1
k2 − 1

(k+1)3 )

Now to complete the proof, we need to prove

1
(k+1)2 ≤

1
k2 −

1
(k+1)3

Multiply by both sides by (k+1)2, obtaining

1 ≤ (k+1)2

k2 − 1
k

≤ (
k2 +2k+1

k2 − 1
k
)

≤ 1+(
2k+1

k2 − 1
k
)

≤ 1+(
2
k
+

1
k2 −

1
k
)

≤ 1+(
1
k
).

Thus the inequality holds, and the statement follows.

5. Unique factorization. 4/3/4
In class, we proved that any number can be written as a product of primes. In this problem, you will prove
that every number has a unique prime factorization. (Warning: do not use the fact that the factorization
is unique in this problem as the point is to prove this fact.)

1. Prove that for a prime p that if p|ab then p|a or p|b. (You may use the fact that if gcd(x,y) = 1 that
there are integers m and n where mx+ny = 1.)
All the variables refer to integers in these solutions.
If p 6 |a then gcd(p,a) = 1 since p is prime and its only divisors are 1 and p.
Thus, we have mp+na = 1. Multiply both sides by b yields bmp+nab = b. We know that kp = ab
by the assumption that p|ab, so we get that bmp+nkp = b or p(bm+nk) = b and since b,m,k and n
are integers we have that p|b.

2. Prove that if p is prime and p|p1 · p2 · · · pk that there is some i where p|pi. (You may use part 1)
By induction. It is clearly true for p1 p2 by part a and for p1 trivially. We assume the statement is true
for the product of k− 1 integers. For k, we have that p|p1b where b = p2 · p3 · · · pk, and thus p|p1 or
p|b by the previous statement. So either p|p1 or by the induction hypothesis p|pi for some i > 1.
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3. Prove that any natural number, x ≥ 2 has a unique prime factorization; there is a unique multiset of
primes whose product is x. For example, 12 is the product of the multiset {2,2,3}. And the multiset
{2,3,2} is the same multiset as {2,2,3} but different from the multiset {2,3}. Perhaps view them as
sorted. (You may use the result from part 2.)

We prove the inductive statement on the value of x. Base case is for x = 2.
Assume that x has two factorizations p1 . . . pm and q1 . . .qn. We can conclude from part 2 that p1|qi

for some i. Thus, p1 = qi for some i. Now by the (strong) inductive hypothesis that x
pi

has a unique
factorization, thus the multiset {p2, . . . , pm} is the same as the multiset {q1, . . . ,qi−1,qi+1,qn} which
implies that the original factorizations were also the same.

6. Edge Colorings: 3/3/3/3/3/4

An edge coloring of a graph is an assignment of colors to edges in a graph where any two edges incident to
the same vertex have different colors.

color 1 color 2

color 3

1. (Short Answer) Show that the 4 vertex complete graph below can be 3 edge colored (use the numbers
1,2,3 for colors.)

Three color a triangle. Add the fourth vertex, notice that each edge has a different color available from
the set of three colors. Done.

2. (Short Answer) How many colors are required to edge color a 3 dimensional hypercube?

3. Recall that edges connect vertices that differ in a dimension. And each vertex is incident to exactly
one edge for each dimension. Thus, the entire set of edges for a specific dimension can be colored with
a single color.

3. Prove that the complete graph on n vertices, Kn, can always be edge colored with n colors. (Hint: is
x+1 (mod n) a bijection?)

Number the vertices: {0, . . . ,n−1}, and the colors the same. For edge (i, j), color it by (i+ j) (mod n)
where we use the representative in {0, . . . ,n− 1}. For any two edges adjacent to vertex i, (i, j) and
(i, j′) we have that i+ j 6= i+ j′ (mod n), thus the coloring is legal.
Here, we used that i has an additive inverse and thus the function f (x) = x+ i (mod n) is a bijection.
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4. Prove that any graph with maximum degree d can be edge colored with 2d−1 colors.

By induction. We will use a set of 2d− 1 colors. Remove an edge and 2d− 1 color the remaining
graph from our set. This can be done by the induction hypothesis as the remaining graph’s degree is
no bigger than d and the graph has fewer edges. The edge is incident to two vertices each of which
is incident to at most d−1 other edges, and thus at most 2(d−1) = 2d−2 colors are unavailable for
edge e. Thus, we can color edge e without any conflicts.

5. Show that any tree has a degree 1 vertex. (You may use any definition of a tree that we provided in the
notes, homeworks or lectures to prove this fact.)
The number of edges in an n-vertex tree is n−1, so the total degree is 2(n−1), and the average degree
as it most 2− 2

n , thus there must be a vertex of degree at most 1.

6. Show that a tree can be edge colored with d colors where d is the maximum degree of any vertex.

By induction. Base case is a single vertex, which has no edges to color, and thus can be colored with
0 colors. Remove the degree 1 vertex, v. Color the remaining tree with d colors. Note that vertex v
ts neighboring vertex has degree at most d−1 without the edge to v and thus its incident edges use at
most d−1 colors. Thus, there is a color available for coloring the edge incident to this vertex.

7. Planar Graphs:3/4/4

K5 can be drawn in the plane with exactly one crossing as follows.

crossing

1. Draw K3,3, the complete bipartite graph with three vertices on each side, in the plane where there is
exactly one crosssing.

2. Prove that K6 cannot have a drawing in the plane with at most one crossing. (You may use the fact that
for any planar graph with e edges and v vertices that e≤ 3v−6.)
Assume a drawing of K6, which has 15 edges and 6 vertices, with one crosssing, remove an edge,
which leaves a planar drawing with 14 edges. But, Euler’s formula suggest e ≤ 3v− 6, or that 14 ≤
3(6)−6 = 12, which is ridiculous. Thus, K6 does not have a planar drawing with one crossing.
Another method is to see that a crossing can be replaced by a vertex, which also breaks two edges into
four. Thus, for a graph with a single crossing, one can obtain a planar graph with e+2 edges and v+1
vertices. Now K6 has 15 edges and 6 vertices.
A planar drawing of K6 would yield a planar graph with 17 edges and 7 vertices.
But by Euler’s formula there is no such planar graph since 17 6≤ 3(7)−6 = 15.

6



3. Prove that for any planar graph where every cycle has length at least 6, there is a vertex of degree at
most 2. (You may use Euler’s formula: that v+ f = e+ 2 for any planar drawing with f faces of a
graph with e edges and v vertices.)
Euler’s formula is v+ f = e+2.
In a planar drawing, each edge is adjacent to at most 2 faces. And for a graph where the minimum
length cycle is 6, each face is adjacent to at least 6 edges.
Thus, we have that 6 f ≤ 2e.
Plugging in to Euler’s formula, we see that v+ 2

6 e ≥ e+ 2, or that 2e ≤ 3v− 6. Thus, the average
degree, 2e

v ≤ 3− 2
v .
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